Skip to Content

Home > Condensed Matter Physics > What is Condensed Matter Physics?

Next >

What is Condensed Matter Physics? popular

10 out of 10 stars (112 votes)

Condensed matter physics deals with the physical properties of condensed phases of matter. These properties appear when a number of atoms at the supramolecular and macromolecular scale interact strongly and adhere to each other or are otherwise highly concentrated in a system. The most familiar examples of condensed phases are solids and liquids. Such every-day condensed phases arise from the electromagnetic forces between atoms. More exotic condensed phases include the mesophases of liquid crystal devices, the superconducting phase exhibited by certain materials at low temperature, the ferromagnetic and antiferromagnetic phases of spins on atomic lattices, and the Bose-Einstein condensate found in certain ultracold atomic systems. Condensed matter physics seeks to understand the behavior of these phases by using well-established physical laws. In particular, these include the laws of quantum mechanics, electromagnetism and statistical mechanics. The diversity of systems and phenomena available for study makes condensed matter physics by far the largest field of contemporary physics. By one estimate, one third of all United States physicists identify themselves as condensed matter physicists. The field has a large overlap with chemistry, materials science, and nanotechnology, and there are close connections with the related fields of atomic physics and biophysics. Theoretical condensed matter physics also shares many important concepts and techniques with theoretical particle and nuclear physics.

Submitted in section: Condensed Matter Physics: What is Condensed Matter Physics?

Review It Rate It Bookmark It