Skip to Content


Home > Astrophysics > What is Astrophysics?

Next >

What is Astrophysics?

http://en.wikipedia.org/wiki/Astrophysics popular

10 out of 10 stars (123 votes)

Information and resources on Alternative Astronomy, Astronomers, Cosmology, Eclipses, Occultations, Extrasolar Planets, Galaxies, Interstellar Medium, Observatories, Planetariums, Research Groups and Centers, Solar System, Star Clusters, Stars, etc.\ Astrophysics (Greek: Astro - meaning "star", and Greek: physis – φύσις - meaning "nature") is the branch of astronomy that deals with the physics of the universe, including the physical properties of celestial objects, as well as their interactions and behavior. Among the objects studied are galaxies, stars, planets, exoplanets, the interstellar medium and the cosmic microwave background. Their emissions are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. The study of cosmology addresses questions of astrophysics at scales much larger than the size of particular gravitationally-bound objects in the universe. Because astrophysics is a very broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics. In practice, modern astronomical research involves a substantial amount of physics. The name of a university's department ("astrophysics" or "astronomy") often has to do more with the department's history than with the contents of the programs. Astrophysics can be studied at the bachelors, masters, and Ph.D. levels in aerospace engineering, physics, or astronomy departments at many universities. Although astronomy is as ancient as recorded history itself, it was long separated from the study of physics. In the Aristotelian worldview, the celestial world tended towards perfection—bodies in the sky seemed to be perfect spheres moving in perfectly circular orbits—while the earthly world seemed destined to imperfection; these two realms were not seen as related. Aristarchus of Samos (c. 310–250 BC) first put forward the notion that the motions of the celestial bodies could be explained by assuming that the Earth and all the other planets in the Solar System orbited the Sun. Unfortunately, in the geocentric world of the time, Aristarchus' heliocentric theory was deemed outlandish and heretical. For centuries, the apparently common-sense view that the Sun and other planets went round the Earth nearly went unquestioned until the development of Copernican heliocentrism in the 16th century AD. This was due to the dominance of the geocentric model developed by Ptolemy (c. 83-161 AD), a Hellenized astronomer from Roman Egypt, in his Almagest treatise.

Submitted in section: Astrophysics: What is Astrophysics?

Review It Rate It Bookmark It