Skip to Content


  Physics: Relativity: Black Holes: Thermodynamics

Home > Physics > Relativity > Black Holes > Thermodynamics

Thermodynamics (Subscribe)

Links

The Thermodynamics of Black Holes

http://arxiv.org/abs/gr-qc/9912119

Review by Bob Wald (University of Chicago). Suitable for undergraduates; includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds.

Review It Rate It Bookmark It

The Thermodynamics of Black Holes

http://relativity.livingreviews.org/Articles/lrr-2001-6/

Review article by Bob Wald, published in Living Reviews in Relativity. Contains detailed information about classical black hole thermodynamics, hawking radiation and black hole entropy.

Review It Rate It Bookmark It

Quantum Geometry and Black Holes

http://arxiv.org/abs/gr-qc/9804039

Review article (graduate level) by Abhay Ashtekar and Kirill Krasnov (Penn State University) about how to explain black hole thermodynamics using the methods of non-perturbative quantum general relativity.

Review It Rate It Bookmark It

Quantum Fields near Black Holes

http://arxiv.org/abs/hep-th/9801025

Review by Andreas Wipf (University of Jena), giving an introduction to quantum fields in spacetime and, more specifically, the Unruh effect and Hawking radiation. Presupposes basic knowledge of quantum field theory and general relativity.

Review It Rate It Bookmark It

Quantum Aspects of Black Holes

http://arxiv.org/abs/astro-ph/0202032

A brief (graduate level) introduction to the quantum aspects of black holes, from the laws of black hole mechanics and Hawking radiation to more advanced aspects such as the interpretation of the entropy and the possible existence of primordial black holes. Written by Claus Kiefer (University of Cologne).

Review It Rate It Bookmark It

Quantum Aspects of Black Holes

http://arxiv.org/abs/hep-th/9209055

Review article by Jeff Harvey (University of Chicago) and Andrew Strominger (UCSB) on Hawking radiation and black hole evaporation, based on lectures given in 1992 in Trieste and Boulder, Colorado.

Review It Rate It Bookmark It

Introduction to Black Hole Microscopy

http://arxiv.org/abs/hep-th/9510026

Review by Ted Jacobson (University of Maryland and Utrecht University), suitable for graduate student. Presents the standard understanding of the Hawking effect, the fundamentals of the Unruh effect, and the connection between the two.

Review It Rate It Bookmark It

Hawking Radiation

http://math.ucr.edu/home/baez/physics/Relativity/BlackHoles/hawking.html

A brief and accessible overview of Hawking radiation from the Physics FAQ; suitable for the general reader. Originally written by John Baez (University of California at Riverside); later modified by Ilja Schmelzer.

Review It Rate It Bookmark It

Hawking Radiation

http://casa.colorado.edu/~ajsh/hawk.html

Brief introduction to the phenomenon, including simple formulas and instructive animations; part of the black hole web pages written by Andrew Hamilton (University of Colorado at Boulder).

Review It Rate It Bookmark It

Black Hole Thermodynamics Today

http://arxiv.org/abs/gr-qc/9801015

Contribution by Ted Jacobson (University of Maryland) to the Eighth Marcel Grossmann Meeting: An overview of development in black hole thermodynamics in the 1990s.

Review It Rate It Bookmark It

Black Hole Thermodynamics

http://www.upscale.utoronto.ca/GeneralInterest/Harrison/BlackHoleThermo/BlackHoleThermo.html

Brief introduction to the basic ideas of black hole thermodynamics; written by David M. Harrison (University of Toronto); uses no mathematical formulas; suitable for a general audience.

Review It Rate It Bookmark It

Black Hole Evaporation

http://arxiv.org/abs/gr-qc/0010055

Very readable tutorial by Jennie Traschen (University of Massachusetts at Amherst) on how to compute the properties of Hawking radiation and perform similar calculations. Presupposes basic knowledge of quantum mechanics and quantum field theory.

Review It Rate It Bookmark It

Black Hole Entropy and Quantum Gravity

http://arxiv.org/abs/gr-qc/9807045

An elementary introduction (at graduate level) to the problem of black hole entropy as formulated by Bekenstein and Hawking. Written by Parthasarathi Majumdar based on a conference talk.

Review It Rate It Bookmark It